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ABSTWACT 

A method for analyzing asymetric biorhythm wave forms is presented 

utilizing a curve fitting technique based on the method of moments and 

solutions of the Volterra Integro-Differential Equation. The mathematical 

derivation is given as well as a worked example using heart-rate (HR) data 

collected from a male chicken. The asymmetric HR wave form could be separated 

into three component curves, an ascending logistic, a descending logistic 

and a unimodal curve (similar in form to a skewed normal distribution), the 

parameters of which describe heart-rate changes and the trajectory of the 

wave form. While these parameters cannot as yet be related to specific 

physioLogica1 mechanisms, the results suggest hypotheses which may be tested 

experimentally. The implications of the mathematical model in the understanding 

of biorhythms are discussed. 



INTRODUCTION 

a major a c t i v i t y  of t h i s  laboratory bas been the continuous monitoring of 

h e a r t  r a t e s  (IKR) , deep body temperatures (DBT) , and locomotor a c t i v i t y  (LA) of 

chickens and primates, u t i l i z i n g  biotelemetry. Fryer e t  a l .  (1966) have des- 

c r ibed  t h e  telemetry system. Data a r e  co l l ec ted  a t  6-minute i n t e r v a l s  and a re  

reduced and analyzed, u t i l i z i n g  a computer program whose major f ea tu res  have 

been described by Winget e t  a l .  (1968). The mathematical b a s i s ' o f  this com- 

puter  program is  t h a t  of  harmonic analys is ,  t h e  technique by which b io logica l  

time s e r i e s  da ta  have been c l a s s i c a l l y  analyzed. 

I n  general ,  harmonic analys is  provides est imates of t h e  pe r iod ic i ty  of  

t h e  da ta  a s  well a s  of  amplitudes and phases of t h e  periods.  Biologis ts  have 

been p a r t i c u l a r l y  i n t e r e s t e d  i n  t h e  pers is tency of  t h e  observed periods and 

phases, and techniques have been devised t h a t  provide such analyses, includ- 

ing  t h e  Periodic Regression ( B l i s s ,  1958) and the  Cosinor (Halberg, 1965). 

The mathematical p r i n c i p l e s  underlying harmonic analys is  have been succinct ly  

described by Pfeif f e r  (1961) , LePage (1941) , and Chapman and Bar te ls  (1940) . 
The inves t iga to r  of b io logica l  time s e r i e s  phenomena o f t en  encounters 

asymmetric responses during 24-hour periods. Such asymmetric curves have been 

reported by Winget e t  a l .  (1965) on DBT measurements i n  t h e  chicken; Winget e t  

a l .  (l968a) on DBT, HR, and LA i n  the  chicken; Winget e t  a l .  (1968b) on DBT and 

HR i n  the  primate, Cebus albafrons;  Winget e t  a l .  ( 1 9 6 8 ~ )  on DBT i n  t h e  primate, 

Macacca nemestrina; Carlson (1968) on tBi i n  as t ronauts  i n  t h e  Gemini-7 f l i g h t ;  

and Kayser a d  Heusner (1967) on oxlpgen uptake i n  the deer mouse, 



This list is  by no means intended t o  be exhaustive, hut  i s  c i t e d  merely t o  

i n d i c a t e  t h e  wide range o f  species  and physiological  p a r m e t e r s  wherein asym- 

metric  b i o r h y t h  da ta  have been encountered. The observed da ta  curves gen- 

e r a l l y  i n d i c a t e  a  r ap id  r i s e  o f  t h e  parameter t o  a  peak value, followed by a 

p la teau  and a rapid  f a l l  t o  minimal l eve l s .  Such curves a r e  not  r ead i ly  ame- 

nable t o  being analyzed by harmonic analys is ,  s ince  poor f i t s  r e s u l t  unless  a  

l a r g e  number of harmonics a r e  u t i l i z e d .  More importantly, harmonic ana lys i s  

does not  explain t h e  r e s u l t s  obtained, and higher order  harmonics a re  d i f f i -  

c u l t  t o  i n t e r p r e t  (Blackman and Tukey, 1958). 

Mean responses of physiological  parameters (e.g., DBT) taken over a  num- 

ber  of time periods may be thought of a s  a  wave form t h a t  i s  s t a t ionary  i n  

time o r  one t h a t ,  when properly transformed, becomes s t a t ionary  i n  t i m e .  This 

paper i s  concerned with t h e  mathematical analys is  of such wave forms and with 

t h e  de ta i l ed  descr ip t ion  of  t h e  mathematical methods developed f o r  t h i s  purpose. 

These methods cen te r  on a unique curve - f i t t ing  device t h a t  represents  a syn- 

t h e s i s  of  well-known mathematical techniques and u t i l i z e s  t h e  method of 

moments. The curve - f i t t ing  technique has wide a p p l i c a b i l i t y  t o  t h e  f i t t i n g  

of  da ta  where the  unknown parameters of t h e  function appear nonlinearly,  so  

t h a t  the  method of least-squares cannot be applied d i r e c t l y .  However, the  

p a r t i c u l a r  appl ica t ion  of t h e  method is  based on so lu t ions  of Vol t e r ra ' s  

Integro-Diff e r e n t i a l  Equation (VIDE) (Volterra,  1913a, 1913b, 1959) . The 

mathematical bas i s  w i l l  be presented i n  d e t a i l ,  and a worked example w i l l  be 

given, u t i l i z i n g  hea r t  r a t e  data  obtained from a male chicken, 



MATEFEMBTICAE mTflODS 

Heart r a t e  da ta  were automatical ly co l l ec ted  on punched paper tape  and 

were then subjected t o  harmonic analys is ,  using a computer program developed 

a t  t h e  laboratory.  The major f e a t u r e s  of  t h e  computer program a r e  a q u a l i t y  

con t ro l  system and computations of periodograms and correlograms. 

A q u a l i t y  cont ro l  system was deemed necessary t o  ensure accuracy of  the  

da ta  before they were subjected t o  f u r t h e r  analys is .  Extreme da ta  po in t s  were 

el iminated and nonharmonic t rends ,  l i n e a r  and nonlinear ,  were removed. Data 

po in t s  were judged t o  be extreme when they f e l l  outs ide  phsyiologic l i m i t s .  

Trends were removed by t h e  use of least-squares procedures. A moving 

phasogram u t i l i z i n g  a 24-hour period was developed t o  de tec t  sudden s h i f t s  

i n  phases, a s  well a s  a moving periodogram t h a t  detected s h i f t s  i n  ampli- 

tudes of periods under observation. The da ta  were then used t o  compute 

periodograms and correlograms. 

Periodogram analys is  is  widely used t o  ind ica te  possibly s i g n i f i c a n t  per- 

iods  while correlograms a re  computed t o  v e r i f y  the  r e s u l t s  of t h e  periodogram. 

These analyses were a l so  used here t o  e s t a b l i s h  the  period f o r  t h e  s t a t ionary  

wave form. 

The curve - f i t t ing  technique t o  be described could be i l l u s t r a t e d  using many 

nonlinear  functions beginning with t h e  simple form, y = a exp(Kt) .  The function 

of i n t e r e s t  here was the  VIDE,  which was u t i l i z e d  f o r  i l l u s t r a t i v e  purposes be- 

cause of  i t s  wide a p p l i c a b i l i t y  t o  b io iogica l  processes. The mathematics a re  



presented i n  d e t a i l  f o r  those i n t e r e s t e d  i n  applying t h e  technique t o  o ther  

eqor ren t i a l  fblrsctlons, A worked example w i l l  be given for "Lose who wish t o  

use the technique t o  f i t  t h e i r  d a t a  but  who a re  not  i i l te res ted  i n  t h e  d e t a i l e d  

mathematics, 

The VIDE may be wr i t t en  as  follows: 

& * = a - b y +  k (7, z) y (z)  dz 
Y d7- 

0 

where y represents  t h e  value of t h e  physiological  system s tudied  ( i n  t h i s  case,  

hea r t  r a t e ) ,  and where t h e  th ree  parameters represent  (following Davis, 1962): 

1. a, a generat ive f a c t o r  proport ional  t o  the  hea r t  r a t e .  

2 .  b, an i n h i b i t i n g  inf luence  proport ional  t o  t h e  square of t h e  hear t  

r a t e .  

3 .  k ( ~ , z ) ,  a heredi ty  component composed of t h e  sum of individual  f a c t o r s  

encountered i n  t h e  pas t .  

These parameters w i l l  be developed from t h e  data.  It i s  necessary, how- 

ever,  t o  attempt t o  def ine  these  parameters i n  t h e  present  context  a s  the  terms 

"generat ive,"  " inh ib i t ing , "  and "heredity" a re  not  used i n  t h e i r  usual sense. 

Vol ter ra  was concerned pr imar i ly  wi th  e luc idat ing  increases  and decreases of  

numbers of  individuals  i n  animal populations, while Davis (1941) applied t h e  

VIDE t o  describing changes i n  economic systems, ext rapola t ing  from examples of  

growth of individual  animals a d  of populations. Each of these  authors could 

u t i l i z e  the  term " g r o e h "  i n  i ts  accepted sense, In t h i s  paper $he parameter, 

a ,  may be though of as a "groWhn p a m e t e r  i n  t h a t  it def ines  t h e  r a p i d i t y  a t  

4 



w c c h  h e a r t  r a t e  increases ,  m d  %he p a a m e t e r ,  b, a s  a "decay" parameter i n  

t h a t  it def ines  t h e  r a t e  a t  which h e a t  r a t e  is  slowed, The t h i r d  parameter, 

k ( T ,  z) , may be tkaoug%t"c of a s  a 'h-memsry" f a c t o r ,  i . e . ,  a phenomenon represent- 

i n g  t h e  e f f e c t  of pas t  h i s to ry  on t h e  hea r t  r a t e  of  the  animal, The biologi-  

c a l  meaning of  these  parameters w i l l  be discussed fu r the r .  

The parameter k(7 ,  z )  w i l l  be r e s t r i c t e d  t o  k ( 7  - z) , s ince  Vol ter ra  

(1913a) has indica ted  t h a t  " i n  the  case  of a closed cycle,  which i s  completely 

equivalent  t o  t h e  case where heredi ty  i s  invar i ab le ,  it can be shown t h a t  the  

i n t e g r a l  equations are  simply functions of  t h e  d i f ference  (7 - z) of t h e  two 

var iables"  (see a l so  Volterra,  l913b, 1959). The parameter k ( ~  - z )  may be 

expanded mathematically i n t o  ax i n f i n i t e  s e r i e s  of i t e r a t e d  i n t e g r a l s  wi th  

f a c t o r s  of propor t ional i ty  K , The f i r s t  of these ,  r e l a t e s  t h e  area  under 
i 

the  wave form with the  d i f f e r e n t i a l  equation. Under t h e  assumption t h a t  a l l  

t h e  K , except K , a re  zero, and making t h e  following transformations: y = a w b ;  
i o 

7 = x/a; and A = K /ab, where a and b a r e  r e s t r i c t e d  t o  values g rea te r  than 
0 

zero, equation (1) s impl i f i e s  t o :  

The family of curves produced by varying A i s  shown i n  Fig. l (Davis, 1962) . 
The case  where = 0 generates the  l o g i s t i c  o r  growth curve, I f  A > 0 ,  i . e . ,  

when K is p o s i t i v e ,  growth increases  without l i m i t ,  I f  A < 0 ,  unimodal types 
0 

of curves are produced whose extreme values approach zero. 



A wave form may be considered t o  represent  t h e  sum of severa l  components, 

each s f  wMch may be of  a type shovm i n  F i g ,  I ,  Hence, wave-form analys is  con- 

sists p r i m a i l y  of p a r t i t i o n i n g  t h e  observed wave form i n t o  ies components. 

An example of such p a r t i t i o n i n g  has heen given by Carver (1924) f o r  a c t ~ a r i a l  

da ta  described by Pearson's frequency d i s t r i b u t i o n  system of curves. 

The parameter, A ,  must be obtained from t h e  data ,  which implies t h a t  a ,  b, 

and K must be estimated. The techniques used f o r  these  es t imat ions  o r ,  
0 

equivalently,  f o r  f i t t i n g  the  da ta  curves w i l l  be described i n  d e t a i l .  

r qua ti on (1) may be rewri t ten  i n  f i n i t e  d i f ference  form (assuming b i s  

negative)  : 

n- 1 
1 

y ( t c 1 )  At = a + by (t) + C K [  (n-1) , - t ]  y (t) 
t = O  

where t i s  an assigned in tege r  f o r  t h e  n da ta  po in t s  a t  t h e  times 7, i . e . ,  

t = 0 ,  1, 2 ,  ..., n - . l ,  n. For equally spaced da ta  At = 1 and thus  vanishes. 

Since K[(n-1) - t ]  i s  a function of  one var iable ,  it may be wr i t t en  formally 

a s  follows, where ris t h e  well-known gamma function: 

S 
I n  order  t o  transform t h e  power t e r n  (n-1-t) i n t o  i t s  f a c t o r i a l  represen- 

S 
t a t i o n  n - - 1  ('I , t he  d i f ference  of  zero. D . are u t i l i z e d  (Davis, 1962) . Thus, 

4 



Equation (4)  i s  therefore :  

where (n-1-t) = (n-1-t) (n-2-t) (n-3-t) . . . (n-q+l) . 
Subs t i tu t ing  (6) i n t o  (3 )  : 

03 S n-1-q 
(n-1-t) 

AY (t) = a + by (t) + C K~ 
Y ( t + l )  SFO 

and not ing  t h a t  (n-1-t) vanishes f o r  t > ( n - 1  , we obtain: 

-r 
The summation operator ,  P , of t h e  f i n i t e  d i f ference  ca lculus  (Milne- 

n 
-m 
D 

Thompson, 1951), is  analogous t o  t h e  general  in teg ra t ion  operator ,  o t (Davis, 

1951) of the  in f in i t e s ima l  ca lcu lus  and has a fonnula s imi la r  t o :  

t Z Z 
-m 

dz dz * * .  y ( z ) d z  =-  
m- 1 

D ~ ( t )  = o t  
f ( t-z)  y (z)dz 

0 0 0 
I'(m) 

0 

The f i n i t e  d i f f e rence  formulation of  t h e  above i s  

- r - 1 (an-t-1) 
(r-1) 

P y (t) = pl = P 
an (n-r.t.1) (n-r+l) r(r) 



-r 
Using this r e l a t i o n s h i p  we can rewri te  equation (8) i n  ternns of t h e  P opera tor ,  

n 

which, i n  tu rn ,  can be computed from t h e  data.  

Summing equation (11) t o  form an integro-difference equation allows us  t o  

e n t e r  t h e  value of y (0 )  (Hudson, 1953), which i s  l o s t  i n  t h e  formulation o f  

d i f  ference-equation (11) . After  l e t t i n g  

G (t) = y (t+l) t (t) 

we obta in  

t h e  integro-difference equation t h a t  i s  t o  be f i t  t o  t h e  data.  The method of 

least-squares may be u t i l i z e d  f o r  f i t t i n g .  However, t h e  method o f  moments was 

considered t o  be more advantageous f o r  two reasons, F i r s t ,  t he  a rea  under the  

wave form is conserved, and second, t h e  ac tual  f i t t i n g  procedure i s  g r e a t l y  

- r 
s impl i f ied  because t h e  summation opera tors ,  P , a r e  ca lcula ted  d i r e c t l y  from 

n 

t h e  da ta  (Harttley, 1948) arzd are relake6 simply t o  the  moments of functions ca l -  

cula ted  +ut a po in t ,  t .= n-l.  



In order  t o  apply t h e  method of moments (Elderton, 19531, we mult iply t h e  

L 
above equaicion by ( t -n+l)  and sum from t = 0 t o  n - 1 t o  obtain:  

It can be shown t h a t  

Then (14) may be rewr i t t en  as: 

Se t t ing  r = 0 ,  1, 2 ,  3 .,. any number of simultaneous l i n e a r  equations may be 

developed whose so lu t ion  provides es t imates  of  t h e  parameters a ,  b, KS, and y ( 0 ) .  

We have been able  t o  describe t h e  present  da ta  with K(r ,z)  Limited t o  t h e  

f i r s t  term of its expansion, K . If t h i s  i s  done, we obtain:  
0 



r 
The D o r  d i f f e rences  of  zero (equation ( 5 ) )  a r e  given i n  Table I. 

X 

RESULTS 

A mature, male, Single Comb White Leghorn chicken was confined i n  a cage 

maintained under thermally neu t ra l  condit ions and was given 14 hours of l i g h t  

(0600-2000 hr) and LO hours of  darkness (2000-0600 hr) . Heart r a t e  da ta  were 

co l l ec ted  a t  6-minute i n t e r v a l s  over a 14-day time period,  following a p r i o r  

equ i l ib ra t ion  period. Pa r t  of t h e  d a t a  a r e  shown i n  Fig. 2, i n  which t h e  wave 

form is  read i ly  seen. 

The 6-minute means, s u i t a b l y  ed i t ed  a s  described e a r l i e r ,  were u t i l i z e d  t o  

produce a periodogram, Fig. 3 ,  and a correlogram, Fig. 4. 

The s igni f icance  of individual  periods was t e s t e d  by use of F i s h e r ' s  prob- 

a b i l i t y  d i s t r i b u t i o n  (Fisher ,  1929). S ign i f i can t  per iods  were observed a t  24, 

12, 6, and 4 hours, P < 0,001, with a suggestion of  a broad band a t  8 hours. 

The correlogram, Fig. 4, v e r i f i e d  the  s igni f icance  of t h e  24-hour period,  

The phase of t h e  24-hour harmonic was consistent over the  14-day data col-  

l e c t i o n  period a s  shown by t h e  "moving phaseogram" analys is .  The l ack  of  change 

a o 



of t h e  phase p e m i t t e d  t h e  14-day da ta  t o  be p o l e d  f o r  wave-£om m a l y s i s .  

Mem h e a r t  r a t e s  a t  hourly i n t e r v a l s  were then computed f o r  t h e  14-day 

period and were normalized by d iv id ing t h e  mean o f  hourly means by t h e  grand 

mean. These "normalized" means were u t i l i z e d  exclus ively  i n  the  analyses 

t o  be discussed. 

Harmonic f i t s  t o  t h e  normalized hourly mean hea r t  r a t e s  were computed and 

a r e  shown i n  Figs. 5 and 6. The 24-hour harmonic c l e a r l y  d id  not  provide a 

good f i t  t o  t h e  da ta  (Fig. 5 ) .  A much b e t t e r  f i t  was obtained when harmonics 

corresponding t o  24, 12, 8, 6, and 4 hour per iods  were employed (Fig. 6 ) .  

The hourly mean hea r t  r a t e s  shown i n  Fig. 5 were asymmetrically d i s t r ibu ted .  

The minimum hear t  r a t e  was reached a t  2000 hr, and t h e  maximum a t  0700 hr.  The 

rapid  r i s e  and f a l l  of hea r t  r a t e s  preceded t h e  l i g h t s  being turned on and o f f  

(0600 and 2000 h r ) .  The da ta  from 1400 t o  2200 h r  appeared t o  follow a l o g i s t i c  

o r  "growth" curve. The da ta  from 2200 t o  1400 h r  appeared t o  be a composite of 

two curves, a unimodal and a l o g i s t i c .  It was, therefore ,  poss ib le  t o  analyze 

this por t ion  of t h e  t o t a l  curve i n  two ways: Hypothesis I: a l o g i s t i c  begin- 

ning a t  2200 hr t o  which a unimodal is added l a t e r ;  and Hypothesis II: a unimodal 

beginning a t  2200 hr and a l o g i s t i c  added l a t e r .  Curves were f i t  under both 

hypotheses, although only t h e  f i t t i n g  of  t h e  l o g i s t i c  and unimodal under Hypoth- 

es is  L w i l l  be presented i n  d e t a i l .  

l a .  



TEE WOaKEB EXAMlPEE 

Table 11 conta ins  t h e  obsesved (normalized) da ta  and the  f i t t e d  values f o r  

t h e  f i r s t  and second approximations, The observed d a t a  (column 2) had been nor- 

malized by d iv id ing each hourly mean b y . t h e  grand mean. These values were coded 

f o r  working purposes by sub t rac t ing  from each t h e  minimal o r  basa l  value of  94.2 

and then mult iplying by 10 t o  obta in  in tege r  values (column 3 ) .  The sum of t h e  

coded values was 1409, which i s  proport ional  t o  t h e  area  under t h e  curve of  

normalized means. 

Three working pos tu la tes  were u t i l i z e d :  

1. The s t a r t i n g  time was taken a t  2200 hr. 

2. The maximum value was taken a t  80 (coded d a t a ) ,  which i s  t h e  average 

of t h e  p la teau  (1000-1500 hr)  . 
3 .  The l o g i s t i c  is  symmetrical about: its i n f l e c t i o n  point ,  which, i n  t h i s  

case,  i s  halfway between 0 a t  2200 hr and 80 a t  0600 hr, a t  which time 

the  maximum was f i r s t  obtained. 

The f i r s t  approximation t o  t h e  l o g i s t i c  was blocked out  by hand, with values 

a s  shown i n  column 4 of Table 11. These values were t h e  r e s u l t  of severa l  e s t i -  

mations, t h e  f i n a l  values chosen t o  produce a unimodal curve, when t h e  estimated 

values were subt rac ted  from t h e  coded values. The estimated values, y ( t ) ,  were 

u t i l i z e d  as shown i n  Table III. The formation of t h e  summation opera tors  (e.g., 

- 1 
P y ( t ) )  can be e a s i l y  seen. It may be noted t h a t  each value i n  any of t h e  sum- 
n 

mation columns i s  t h e  sum of  t h e  values behind it. Thus, 

-I 
P, ~ ( t )  = 902 = C y (t) 

t=O 



In  developing t h e  set of  simultaneous equations whose so lu t ion  provides the  

es t imates  of a, b, and y(Oj ,  t h e  p a r m e t e r s  of  t h e  l o g i s t i c ,  only t h e  f i n d l  

va lues  of  the  summation columns a re  used. It should be r e c a i i e d  t h a t  f o r  t h e  

l o g i s t i c  K = 0, hence only tbzee  sinultaneous equations need be solved. 
0 

The simultaneous equations are,  following equation (17):  

lh f i n a l  form: 

It may be seen t h a t  t h e  first t h r e e  successive coe f f i c i en t s  of y(0)  a re  n ,  

[n (n-1) ] /2, and [n (n-1) (2n-1) ] /6. The four th  c o e f f i c i e n t  required i n  f i t t i n g  

2 
t h e  unimodal i s  given by [n (n-1) /2 ]  . 

The solu t ions  of these  simultaneous equations, obtained i n  t h e  usual fash- 

ion,  are:  

The recursion r e l a t i o n s f i p  t h a t  es t imates  the  successive f i t t e d  values 

(upper half  of c o l  7 of Table 11) i s  given by 

2.3 



which, i n  t h i s  case is  

beginning with 9 (0) = 2.1724. 

The estimation of the t o t a l  curve from 2200 t o  1400 hr i s  shown i n  Table 

P I ,  column 6. The estimates of the  l og i s t i c  were subtracted from the t o t a l  

curve t o  provide the f i r s t  approximation of the unimodal. The development of 

the  summation operators i s  as  shown i n  Table IV as  are the coeff ic ients  of the 

parameters t o  be estimated, a,  b, KO, and y (0) . Equation (17) , applicable t o  

the  unimodal curve, may be writ ten i n  matrix notation AC = R where the  elements 

of the matrices are developed as shown i n  the l a t t e r  par t  of Table I V .  The C 

matrix i s  the desired solution, a,  b, KO, and y(0) and is  found by solving 

-1 
C = A R. The de t a i l s  are as  follows: 



The recursion re la t ionsh ip  t o  develop t h e  successive values of y ( t )  is: 

-1 A - 1 - 1 
where Pt y (t) are  t h e  successive values of P f (t) , beginning with P 9 (t) = 0. n 

The f i r s t  value y (0) = 2.5760; t h e  second would be given by: 

The f i t t e d  values f o r  y ( t )  a re  shown i n  column 8 of Table 11. 

The descending l o g i s t i c  from 1400-2100 h r  was f i t  i d e n t i c a l l y  under each 

hypothesis i n  a manner s i m i l a r r  t o  t h a t  described f o r  t h e  ascending l o g i s t i c  

given *ve, The backwad re la t ionsh ip  for a l o g i s t i c  is: 



Equations (18) and (20)  p e m i t  '"ornard" and "backward" so lu t ions  of t h e  

l o g i s t i c  equation, It i s  thus poss ib le  t o  u t i l i z e  da ta  covering only a p r t i o n  

of  the l o g i s t i c  curve .t;c es t imate  t h e  necessary p a r m e t e r s  (a ,  b, and y ( O ) j  and 

t o  extend t h e  f i t t e d  curve i n  e i t h e r  o r  both d i rec t ions .  I n  this case,  equa- 

t i o n  (20) was u t i l i z e d  (backward s o l u t i o n ) ,  although equation (18) could have 

been a s  e a s i l y  used. 

The l o g i s t i c  and unimodal under Hypothesis I1 were f i t  s imi lar ly .  The 

estimated parameters f o r  a l l  f i v e  curves a r e  shown i n  Table V. The t o t a l  

curves and t h e i r  components f i t  under t h e  two hypotheses a r e  shown i n  Figs.  7 

and 8. 

DISCUSSION 

The techniques of wave-form analys is  a r e  intended not  t o  replace,  but  

r a t h e r  t o  supplement harmonic analys is .  Wave-form ana lys i s  begins only a f t e r  

harmonic ana lys i s  has been completed and helps  def ine  functional  r e l a t ionsh ips  

i n  ways t h a t  would be q u i t e  d i f f i c u l t  were only harmonic ana lys i s  used. Asym- 

metric  da ta ,  such a s  d a i l y  h e a r t  r a t e  v a r i a t i o n  i n  t h e  chicken, were indeed f i t  

with a harmonic s e r i e s  (Fig. 6), but the  f i t  represented an empirical r e l a t ion-  

sh ip  i n  t h a t  t h e  parameters (harmonics) could not  be r ead i ly  u t i l i z e d  t o  explain 

t h e  observed da ta ,  On t h e  o t h e r  hand, t h e  VIDE i s  a biological ly-derived model 

containing "growth" and " inhibi tory"  parameters t h a t  r e l a t e  t o  r e a l ,  but a s  y e t  

unident i f ied ,  physicochemical processes involved i n  e s t ab l i sh ing  t h e  observed 

I n  discussion s f  t h e  VIDE it i s  not w s s i b l e  a t  t h i s  time t o  u t i l i z e  stand- 

ard terminology i n  p rec i se  ways, a s  t h e  necessary experimental work has yet t o  
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be done, Basic concepts,  however, shkiuLd not  be i g o r e d  simply because they 

c m o t  be defined p rec i se ly .  It i s  concepkually co r rec t  t o  speak of t h e  area  

under t h e  wave form a s  being proport ional  t o  energy o r  work, even though t h e  

amount o f  work cannot be quant i f ied .  It i s  c l e a r  t h a t  t h e  h e a r t  muscle has 

performed work. It i s  a l so  evident  t h a t  i n  t h e  normal physiological  s i tua -  

t i o n ,  the  g r e a t e r  t h e  t o t a l  number of bea t s  pe r  24 hours, t h e  g r e a t e r  t h e  work 

performed and t h e  g r e a t e r  t h e  area  under t h e  wave form. I t  may thus  be q u i t e  

reasonable t o  attempt t o  define t h e  parameters of t h e  VIDE i n  terms of  energy 

expenditures. 

The "g~ovPth" parameter, a ,  i s  proport ional  t o  t h e  energy inpu t s  r e l a t i v e  

t o  t h e  working of t h e  h e a r t ,  while b c o n t r o l s  the  r a t e  a t  which energy i s  

expended. The f i r s t  i s  proport ional  t o  t h e  hea r t  r a t e ,  while t h e  second i s  

proport ional  t o  the  square of t h e  hea r t  r a t e .  In  the  l o g i s t i c  equation, b does 

no t  become i n f l u e n t i a l  u n t i l  some time a f t e r  t h e  curve has l i f t e d  o f f  the  basa l  

l eve l .  The mechanism(s) by which b opera tes  is, of course, not  known. 

The unimodal curve conta ins ,  i n  addi t ion  t o  a and b, a t h i r d  parameter, 

K . It i s  this parameter, t h e  "memory," t h a t  causes t h e  VIDE t o  operate,  i n  
0 

Vol te r ra ' s  words, a s  a "closed cyc le , "  thus  ensuring the  c y c l i c  na ture  of t h e  

curve. The presence of  this parameter i n f e r s  t h a t  b u i l t  i n t o  t h e  system is a 

monitor t h a t  keeps t r a c k  of the  t o t a l  amount of  energy expended t o  any i n s t a n t  

i n  time, A t  t h e  same time t h e  memory a l s o  con t ro l s  t h e  d i rec t ion  and path  o f  

t h e  curve, so  t h a t  the curve r e t u r n s  t o  i t s  s t a t i n g  point ,  m&ing poss ib le  t h e  

p e r i o d i c i t y  of the  wave fom, 



The mathematical t e c h i q u e  used t o  f i t  the  VIDE family of equations was 

the  methd sf moments, The c r i t e r i on  of stbest  f i t s "  i s  the conservation of 

the  area under the  wave form, analogous t o  conservation of energy. By defini-  

t ion ,  the  method of moments conserves the  area under the  wave form, so t h a t  

areas under observed and f i t t e d  wave forms are  iden t ica l ,  except fo r  round-off 

error .  Thus, t he  VIDE curves f i t  under Hypotheses I and II (Figs. 7 and 8) 

cannot be distinguished a s  t o  a be t t e r  f i t  t o  the data, because the  areas 

under each of the  curves are, t o  a l l  i n t en t s  and purposes, the  same. 

Whether t h e  curves f i t  under Hypothesis I are a more correct  representa- 

t ion  of the  t rue  physiological s i t ua t i on  than are those f i t  under Hypothesis 

1% cannot be ascertained mathematically. The estimated parameters (Table V) 

indicate t h a t  Hypothesis I may be more acceptable. F i r s t ,  the  ascending logis-  

t i c  of Hypothesis I i s  more s imilar  t o  the  common, descending log i s t i c ,  i n  t h a t  

the  parameters are more nearly a l ike  than under Hypothesis 11, arguing from the 

basis  of physiological symmetry. Second, the  " inhibi tor ,"  b, of the  unimodal 

f i t  under Hypothesis I1 i s  posi t ive ,  indicat ing t ha t  it is another energy input 

ra ther  than an inh ib i to r ,  forcing the  "memory, " 
IC0 

t o  serve as  the  inhibi tor .  

Mathematical reasoning must give way t o  physiological experimentation i n  

order t o  properly dist inguish between these hypotheses. It i s  not known what 

physiological parameters o r  mechmisms are  represented by the  component curves, 

nor is it h o r n  whether the  l og i s t i c  and the  unimodal curves each represent a 

d i sc re te  p a m e t e r  or are, i n  fact, each the sm of many logistic and mimodal 

curves, respectively. 



The f i t t e d  curves, F igs ,  7 m d  8, give evidence of t h e  e n t r a i m e n t  of  

t o  t h e  14:lO &ight:dark regimen, F i ~ r e  7 ( m p t h e s i s  I) shows t h a t  t h e  curve 

c rosses  t h e  mean ( loo%,  right-hand axis)  a t  0300 and 1700 hr, a 14:lO r a t i o .  

Also, t h e  maximum and minimum po in t s  occur a t  0700 and 2200 hx, again a 1 4 ~ 1 0  

r a t i o ,  For t h e  curves f i t  under Hypothesis I E ,  s imi la r  r a t i o s  a r e  seen, 

Winget e t  a].. (1968b) observed entrainment of  DBT and HR i n  t h e  primate, 

Cebus albafrons,  t o  a 12:12 1ight:dark regimen, based a l s o  on f i t t e d  VIDE 

curves. 

Under H y p t h e s i s  I (Fig. 7) t h e  l i f t o f f  of  t h e  f i r s t  l o g i s t i c  from basal  

l e v e l  occurs a f t e r  2200 hx, while t h a t  of t h e  unimodal occurs a f t e r  0200 hr. 

The second l o g i s t i c  leaves  its upper p la teau  a f t e r  1500 hr .  Mathematically, 

s ince  t h e  l o g i s t i c  curve must remain a t  i t s  lower o r  upper asymptote and t h e  

mimodal must remain a t  i ts  basal  l e v e l  u n t i l  perturbed, t h e  presence of posi- 

t i v e  and negative pulses  o r  s i g n a l s  i s  thus  demonstrated. In f a c t ,  t he  pulses  

themselves a r e  s u f f i c i e n t  condit ions f o r  t h e  establishment of t h e  wave foxm, 

s t a t ionary  i n  time, 

The d i f ferences  i n  time between t h e  observed p a i r s  of pulses  approximate 

those times observed f o r  s i g n i f i c a n t  per iods  i n  t h e  periodogram (Fig. 3 ) .  The 

i n t e r v a l  from 2200 t o  0200 hr is  4 hours; t h a t  from 1500 t o  2200 hr is  7 hours 

(approximately 6 hours);  and t h a t  from any pulse  t o  i t s e l f  i s  24 hours. The 

harmonic model assrames t h a t  significajnt periods repeat  regular ly ,  so t h a t ,  f o r  

example, t h e  4-hour period occurs s i x  times per 24-hour i n t e r v a l ,  H~wever, t h e  

cont r ibut ions  to t h e  sum af hamonics made by each period are no t  equal over 

the  24-hour i n t e r v a l ,  and, i n  fact ,  t h e  cont r ibut ion  may be e i t h e r  negative o r  
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posit ive.  ~ i o l o g i c a l l y ,  a reghllar 4-hour period may be unrea l i s t i c ,  yet  it may 

be u t i l i z ed  by hamonic malys is  to be t t e r  f i t  a port ion of the  wave Som, In 

nic model oniy a s ingle  pulse per harmonic is  required, one t h a t  could 

have occurred at my time i n  the  past ,  In the  VIDE model a pulse is  required 

a t  l e a s t  once within the  basic period, i n  this case, every 24 hours. It i s  

therefore postulated t h a t  the  in te rva l s  between pulses may be picked up by 

harmonic analysis a s  s ign i f ican t  periods, even though they do not recur within 

the basic period. 

The VIDE model may be more functionally re la ted  t o  the  t rue  physiological 

mechanisms, and may thus provide the biologis t  with opportunities t o  understand 

biorhythm data. The VIDE model by i t s e l f  does not indicate  which of the three 

pulses noted is the  primary pulse (and hence leads) and which pulses lag. The 

primary pulse may be thought of a s  the  and perhaps can be distinguished 

by experiments t h a t  are designed t o  compare r e l a t i ve  degrees of entrainment t o  

the  photoperiod. 
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Table I DIFFERENCES OF ZERO 

This table may be extended by the finite difference formulae: 



Hour 

2200 

2300 

2400 

QEQO 

8200 

0300 

0400 

0500 

0600 

0700 

0800 

0900 

1000 

1100 

1200 

1300 

1400 

1500 

1600 

1700 

1800 

1900 

2000 

2100 

Sum 

Table II CODED NORMALIZED HEART RATE MEANS OBSERVED AND ESTIMATED W E R  HUPOTHESIS 1 

First Approximalion 
(Freehand) 

Second Approximation 
(MaUlematical Fit) 

Nomalized Coded 
Data Data1 Logistic Unim~dal Total Logistic Unimodal Total 

'value in parer&ews is the observed coded value. A value of 5 was substituted. 
2~a lues  in parentheses are on the upper plateau, assumed, but not used in fitting the logistic. 



Tabb 111 FIT OF THE FIRST LOGlSTlC W E R  WPI)TRESIS B 



Table IV FIT 01: TWE mIMODAL m E R  NUPlOTNESlS I 

A14 = n 

A,& = n ( e l ) / Z  

A,, = n(n=I)(.2~1)/6 

nd4 = aia2412 



Hypothesis 

1 

Table V ESTII1IATED PA mRS OF THE FITTED CURmS 

Type of 
Curve 

Logistic 2300 - 0600 0.6344 -0.0077 - 2.7124 

Unimodal 0300 - 1300 0,6874 -0.0058 -0.0090 2.5760 

Logistic 0400 - 1000 0.8196 -0.0103 - 0.8196 

I and I1 Inverted Logistic 1400 - 2100 0.6966 -0.0087 - 2.1156 



FIG= CAPTIONS 
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19 i n  terns of A. 
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Figure 2 Heart r a t e  da ta  co l l ec ted  a t  6-minute i n t e r v a l s  over a 14-day time 

period,  Shaded a rea  of  wave form i n d i c a t e s  hours of  darkness i n  

t h e  24-hour period.  

Figure 3 Periodogram of h e a r t  r a t e  from da ta  co l l ec ted  from an i s o l a t e d  male 

chicken. K is  t h e  square of  t h e  amplitude (R) of  t h e  o s c i l l a t i o n  

2 
normalized by t h e  length  (N) and variance (5 ) of t h e  time s e r i e s  

Figure 4 Correlogram of hea r t  r a t e  from da ta  co l l ec ted  every 0.1 hour from 

an i s o l a t e d  male b i r d  f o r  14 consecutive days. The c o r r e l a t i o n  co- 

e f f i c i e n t  is f o r  l a g  k ( i .e . ,  when k = 1, l a g  = 0.1 hour; therefore ,  

k = 240 represents  a l a g  of  24 hours).  

Figure 5 A harmonic f i t  (7 = 24 hours) t o  t h e  normalized hourly mean hea r t  

r a t e s  from an i s o l a t e d  male chicken. 

Figure 6 Harmonic f i t s  (T = 24, 12, 8, 6, and 4 hours) t o  t h e  normalized hourly 

mean h e a r t  r a t e  from an i s o l a t e d  male chicken, 

Figure 7 The VIDE curve f i t  wi th  Hypothesis I, 

Figure 8 The VZDE curve f i t  with Hypothesis 11. 
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